skip to main content


Search for: All records

Creators/Authors contains: "Zuidema, Shan"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. We utilize a coupled economy–agroecology–hydrology modeling framework to capture the cascading impacts of climate change mitigation policy on agriculture and the resulting water quality cobenefits. We analyze a policy that assigns a range of United States government’s social cost of carbon estimates ($51, $76, and $152/ton of CO2-equivalents) to fossil fuel–based CO2emissions. This policy raises energy costs and, importantly for agriculture, boosts the price of nitrogen fertilizer production. At the highest carbon price, US carbon emissions are reduced by about 50%, and nitrogen fertilizer prices rise by about 90%, leading to an approximate 15% reduction in fertilizer applications for corn production across the Mississippi River Basin. Corn and soybean production declines by about 7%, increasing crop prices by 6%, while nitrate leaching declines by about 10%. Simulated nitrate export to the Gulf of Mexico decreases by 8%, ultimately shrinking the average midsummer area of the Gulf of Mexico hypoxic area by 3% and hypoxic volume by 4%. We also consider the additional benefits of restored wetlands to mitigate nitrogen loading to reduce hypoxia in the Gulf of Mexico and find a targeted wetland restoration scenario approximately doubles the effect of a low to moderate social cost of carbon. Wetland restoration alone exhibited spillover effects that increased nitrate leaching in other parts of the basin which were mitigated with the inclusion of the carbon policy. We conclude that a national climate policy aimed at reducing greenhouse gas emissions in the United States would have important water quality cobenefits.

     
    more » « less
    Free, publicly-accessible full text available October 24, 2024
  2. Abstract. This paper describes the University of New Hampshire Water Balance Model, WBM, a process-based gridded global hydrologic model that simulates the land surface components of the global water cycle and includes water extraction for use in agriculture and domestic sectors. The WBMwas first published in 1989; here, we describe the first fully open-sourceWBM version (v.1.0.0). Earlier descriptions of WBM methods provide the foundation for the most recent model version that is detailed here. We present an overview of themodel functionality, utility, and evaluation of simulated global riverdischarge and irrigation water use. This new version adds a novel suite ofwater source tracking modules that enable the analysis of flow-path histories on water supply. A key feature of WBM v.1.0.0 is the ability to identify the partitioning of sources for each stock or flux within the model. Three different categories of tracking are available: (1) primary inputs of water to the surface of the terrestrial hydrologic cycle (liquid precipitation, snowmelt, glacier melt, and unsustainable groundwater); (2) water that has been extracted for human use and returned to the terrestrial hydrologic system; and (3) runoff originating from user-defined spatial land units. Such component tracking provides a more fully transparent model in that users can identify the underlying mechanisms generating the simulated behavior. We find that WBM v.1.0.0 simulates global river discharge and irrigation water withdrawals well, even with default parameter settings, and for the first time, we are able to show how the simulation arrives at these fluxes by using the novel tracking functions. 
    more » « less
  3. null (Ed.)
    As pressure on the dairy industry to reduce its environmental impact increases, efficient recycling of manure nutrients through local cropping systems becomes crucial. The aim of this study was to calculate annual nitrogen (N) and phosphorus (P) budgets in six counties located in the Magic Valley, Idaho and estimate what distance manure would need to be transported to be in balance with crop nutrient demand given current dairy cattle populations and cropping systems. Our analysis suggests that crop N needs will not be met solely by manure, and synthetic fertilizer will need to be applied. However, to balance P with crop production, manure would need to be transported a minimum of 12.9 km from dairies and would have to replace synthetic fertilizer P on 91% of regional cropland. Education of producers and technical specialists would be necessary to improve the management of manure use in regional cropping systems. Technical solutions such as alternative diets for cattle and nutrient capture from manure streams will also likely be necessary to bring regional P into balance to protect environmental quality and improve the sustainability of the regional dairy industry. 
    more » « less